The Crystal Structure of Yeast Phenylalanine tRNA at 2.0 Å Resolution: Cleavage by Mg\(^{2+}\) in 15-year Old Crystals

Luca Jovine, Snezana Djordjevic and Daniela Rhodes*

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK

We have re-determined the crystal structure of yeast tRNA\(^{Phe}\) to 2.0 Å resolution using 15 year old crystals. The accuracy of the new structure, due both to higher resolution data and formerly unavailable refinement methods, consolidates the previous structural information, but also reveals novel details. In particular, the water structure around the tightly bound Mg\(^{2+}\) is now clearly resolved, and hence provides more accurate information on the geometry of the magnesium-binding sites and the role of water molecules in coordinating the metal ions to the tRNA. We have assigned a total of ten magnesium ions and identified a partly conserved geometry for high-affinity Mg\(^{2+}\) binding. In the electron density map there is also clear density for a spermine molecule binding in the major groove of the T\(\Psi\)C arm and also contacting a symmetry-related tRNA molecule. Interestingly, we have also found that two specific regions of the tRNA in the crystals are partially cleaved. The sites of hydrolysis are within the D and anticodon loops in the vicinity of Mg\(^{2+}\).

Keywords: tRNA\(^{Phe}\); crystal structure; Mg\(^{2+}\); spermine; RNA hydrolysis

Introduction

Transfer RNAs (tRNAs) decode the genetic information in messenger RNA and carry amino acid residues to the ribosome where protein synthesis takes place. The availability from cells and their great biological importance rendered tRNAs the target of early crystallographic studies on nucleic acid structure. The three-dimensional structure of yeast phenylalanine tRNA was independently determined by two groups a quarter of a century ago to 3.0 Å resolution (Robertus et al., 1974; Kim et al., 1974), and subsequently the resolution was extended to 2.5 Å (Ladner et al., 1975; Quigley et al., 1978). Since at that time there was no direct structural information on DNA, the crystal structure of yeast tRNA\(^{Phe}\) provided the first view of nucleic acid double helices, and, more interestingly, it revealed the complexity of RNA folding, together with a wealth of information on how this is achieved. The structure showed how the "clover-leaf" secondary structure of tRNAs folds into a compact L-shaped three-dimensional structure held together by a set of tertiary and triple base-pair interactions, as well as a number of magnesium ions that are crucial for folding and stability (Figure 1(a), (b)) (Ladner et al., 1975; Jack et al., 1977; Quigley et al., 1978; Stout et al., 1978; Westhof et al., 1988a).

The crystallographic work on yeast tRNA\(^{Phe}\) also provided the first structural information on site-specific self-cleavage of an RNA molecule and the role of divalent metal ions in the hydrolysis (Brown et al., 1983, 1985). This preceded the discovery of ribozymes, RNA enzymes that catalyse the specific cleavage and formation of chemical bonds (Cech & Uhlenbeck, 1994; Scott & Klug, 1996). In yeast tRNA\(^{Phe}\), a specifically bound Pb\(^{2+}\) causes the rapid and specific hydrolysis of the RNA chain between residues H2U17 and G18 in the D loop, both in solution and in the crystal at neutral pH conditions (Brown et al., 1983, 1985). From this work it was concluded that the Pb\(^{2+}\) participates directly in the reaction by acting as a base catalyst involving metal-hydrate complexes, and that an in-line attack mechanism may be involved. Site-specific hydrolysis of tRNA can also take place in solution in the presence of Mg\(^{2+}\), but in this case optimal cleavage rates require elevated tempera-
Figure 1. The location of Mg\(^{2+}\) in the secondary and tertiary structure of yeast tRNA\(^{Phe}\). (a) “Cloverleaf” representation of yeast tRNA\(^{Phe}\) secondary structure. Different regions of the molecule are indicated and colour-coded accordingly. Watson-Crick base-pairs are represented by short black lines, the single G4-U69 wobble pair is marked by a black dot. Tertiary interactions are shown as grey lines, while arrows indicate stacking of the enclosed nucleotides onto 5' or 3' helices. The anticodon and the terminal CCA sequence are boxed in red and grey, respectively. Tightly and weakly bound Mg\(^{2+}\) are shown as green and white circles, respectively, with green arrows indicating the nucleotides with which they interact. The spermine molecule is represented by a red stick, with four dots corresponding to its nitrogen atoms (not drawn to scale); grey arrows indicate interactions with the RNA. The A14 nucleotide of a symmetry-related molecule is labelled in reverse colours. Modified nucleotide name abbreviations are: 2MG, N\(_2\)-methylguanosine; H2U, dihydrouridine; M2G, N\(_2\),N\(_2\)-dimethylguanosine; OMC, 2'-O-methylcytidine; OMG, 2'-O-methylguanosine; YG, wybutosine; PSU, pseudouridine; 5MC, 5-methylcytidine; 7MG, 7-methylguanosine; 5MU, ribosylthymine; 1MA, 1-methyladenosine. (b) Ribbon representation of the three-dimensional structure. The spermine molecule, in red, is shown in stick representation. Water molecules have been omitted for clarity. (c) Stick representation of the three-dimensional structure, colour-coded according to temperature factors. Temperature factors from low to high are depicted on a scale going from blue to red, respectively. The most flexible regions of the structure are the 5' strand of the acceptor stem, the terminal CCA sequence and the anticodon loop. Nucleotides H2U16 and H2U17 are also highly mobile, but this is not as evident in this Figure because their occupancy was refined to account for the Mg\(^{2+}\)-catalysed cleavage (see Materials and Methods).
tures and high pH conditions (Wintemeyer & Zachau, 1973).

The recent interest in RNA structure and self-cleaving ribozymes, together with the development of intense X-ray sources, as well as modern structure refinement methods, prompted us to re-examine the crystals of yeast tRNA$_{Phe}$ with the aim of obtaining higher resolution and more accurate structural information than was possible 25 years ago. The structure we have determined at 2.0 Å resolution consolidates the previous structural information, but also reveals novel details on the geometry of the Mg$^{2+}$ binding sites and the role of the inner and outer hydration shells in coordinating the metal. We have assigned ten Mg$^{2+}$ and there is also clear density for a spermine molecule contacting two symmetry-related tRNA molecules in the crystal lattice. Interestingly, we have also found that the tRNA in the 15-year old crystals is partially and specifically cleaved in two regions of the RNA chain, both in the vicinity of Mg$^{2+}$ ions. The positions of cleavage are in the D loop, between G15, H2U16 and H2U16, H2U17, and within the anticodon loop. We discuss the possible mechanism for the magnesium-dependent cleavage of tRNA and its relationship to the previously observed cleavage by lead.

Results and Discussion

The crystals used in this study for re-determining the three-dimensional structure of yeast tRNA$_{Phe}$ were about 15 years old and of the same type (monoclinic, space group $P2_1$) as the ones used for the determination of the original crystal structure by our group (Ladner et al., 1972, 1975; Robertus et al., 1974; Jack et al., 1977). The crystals, which had been grown using the dialysis method, had been stored at 4 °C. Despite their age, they preserved excellent order and diffracted to beyond 2.0 Å resolution at the ESRF synchrotron source at 100 K. Interestingly, the age of the crystals allowed the metal. We have assigned ten Mg$^{2+}$ and the spermine molecule.

Structure determination and overall model

The structure of yeast tRNA$_{Phe}$ (76 nucleotides) was solved to 2.0 Å resolution as described in Materials and Methods. The current model has been refined to an R factor of 22.7% and a R_{free} of 26.3%, and includes ten Mg$^{2+}$ ions, one spermine molecule and 220 water molecules (Table 1). The quality of the resulting electron density map can be seen in Figures 2 and 3. Figure 1(a) and (b) show the well known ‘cloverleaf’ representation of yeast tRNA$_{Phe}$ secondary structure and its L-shaped three-dimensional fold, together with the location of the Mg$^{2+}$ and the spermine molecule. The new structure corroborates essentially all of the major features of tRNA obtained from previous structural analyses (Ladner et al., 1975; Jack et al., 1977; Quigley et al., 1978; Stout et al., 1978; Westhof et al., 1988a) with a root mean square deviation (RMSD) between the new and old structures of ~1.1 Å (see Materials and Methods), but also provides novel insights. The most interesting new findings are the identification of a conserved coordination geometry between magnesium ions and RNA and the location of a spermine molecule sandwiched between two tRNA molecules. In addition, the ribose puckers of nucleotides A21 and U47 have been modified to C3-endo and C2-endo, respectively; the conformation of nucleotide G19 has been changed to anti; the 3'-end nucleotide A76 does not continue the stacking of the C atoms in the CCA-end, but instead points in the opposite direction, interacting with A56 of an adjoining tRNA molecule.

Table 1. Crystallographic data collection and refinement statistics

<table>
<thead>
<tr>
<th>A. Crystallographic data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of crystals</td>
<td>1</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>100</td>
</tr>
<tr>
<td>Space group</td>
<td>$P2_1$</td>
</tr>
<tr>
<td>Unit cell dimensions (Å)</td>
<td>$a = 55.25, b = 32.99, c = 61.88, \beta = 90.38$</td>
</tr>
<tr>
<td>Resolution range (Å)</td>
<td>25.80-2.00</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.932</td>
</tr>
<tr>
<td>Number of reflections</td>
<td>30,638</td>
</tr>
<tr>
<td>Number of unique reflections</td>
<td>13,678</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>88.6 (70.7)%</td>
</tr>
<tr>
<td>R_{free} (%)</td>
<td>26.3 (41.3)%</td>
</tr>
<tr>
<td>Bond length deviation (Å)</td>
<td>0.0088</td>
</tr>
<tr>
<td>Bond angle deviation (deg.)</td>
<td>1.4</td>
</tr>
<tr>
<td>Improper angle deviation (deg.)</td>
<td>1.3</td>
</tr>
<tr>
<td>Dihedral angle deviation (deg.)</td>
<td>12.7</td>
</tr>
<tr>
<td>Average B factor (Å2)</td>
<td>53.6</td>
</tr>
<tr>
<td>Minimum B factor (Å2)</td>
<td>14.9</td>
</tr>
<tr>
<td>Maximum B factor (Å2)</td>
<td>120.9</td>
</tr>
<tr>
<td>B RMSD for bonded main-chain atoms (Å2)</td>
<td>3.5</td>
</tr>
<tr>
<td>B RMSD for bonded side-chain atoms (Å2)</td>
<td>4.1</td>
</tr>
</tbody>
</table>

*Values in parenthesis refer to the highest resolution shell (2.10-2.00 Å).

R_{free} is the R value obtained for a test set of reflections, consisting of a randomly selected 6.8% subset (926 reflections) of the diffraction data, not used during refinement.

Values in parenthesis refer to the highest resolution shell (2.07-2.00 Å).
forming both tertiary base-pairs and triple base-pairs with the D stem and its linker to the anticodon arm (Jack et al., 1976; Quigley et al., 1978; Westhof & Sundaralingam, 1986). Consequently, the most complex part of the structure is more rigid than the double helical stems of the acceptor and anticodon arms. The most flexible parts of the structure are the 5' strand of the acceptor stem, the CCA-end, a short single stranded stretch of the D loop containing the two dihydrouridine groups and the anticodon loop. The rigid, central region of the structure contains four tightly bound Mg$^{2+}$ ions, binding sites 1, 2, 3 and 4 (Figures 1(a), (b) and 3). All these Mg$^{2+}$ have low temperature factors, confirming that they are important for stabilising the three-dimensional fold. This is particularly evident in the case of Mg$^{2+}$ 3 and 4, which, due to an extensive network of both direct and water-mediated contacts, have lower temperature factors than the RNA nucleotides with which they interact (Figure 3(c), (d)). This observation is consistent with solution melting studies on yeast tRNA$^{\text{Phe}}$ that show that removal of Mg$^{2+}$ lowers the melting temperature and changes the melting pathway (Rhodes, 1977). However, since the overall structure of yeast tRNA$^{\text{Phe}}$ is approximately the
Figure 2. Gallery of triple and tertiary base-pairs in the three-dimensional structure of yeast tRNA^Phe. (a) Stick representation of triple base-pairs shown within their combined, sigmaweight $|F_o - F_c|$ electron density map contoured at 1.0 σ. Phosphate atoms are shown in magenta, carbon atoms in yellow, nitrogen atoms in blue and oxygen atoms in red. Nucleotide labels are colour coded according to the scheme in Figure 1(a). Mg$^{2+}$ and water molecules are indicated by green and red spheres, respectively. For clarity, only hydrogen bonds between nucleotides are shown (broken green lines). (b) Stick representation of tertiary base-pairs shown within their combined, sigmaweight $|F_o - F_c|$ electron density map contoured at 1.0 σ. Conventions are as in (a).
Figure 3. The four strong Mg$^{2+}$-binding sites in yeast tRNAPhe. (a) Mg$^{2+}$-binding site 1, (b) Mg$^{2+}$-binding site 2, (c) Mg$^{2+}$-binding site 3, (d) Mg$^{2+}$-binding site 4. For each site, a stereo representation with combined, sigmaa-weighted $\delta F_o - F_c$ electron density map contoured at 1.0 σ is shown on the left; on the right, the same binding sites are shown colour-coded according to temperature factors. Conventions are as described in legend to Figure 2. Direct bonds (≤2.1 Å) involving Mg$^{2+}$ ions are shown as continuous black lines, with the exception of the longer range contacts made by Mg$^{2+}$ 1 (a), which are depicted as broken black lines. The bases of nucleotides G18 and G19 have been omitted for clarity from (c).
same in 0.1 M NaCl as it is in 10 mM MgCl₂ (Rhodes, 1977), the folding of the “cloverleaf” into the three-dimensional structure must be driven by the formation of tertiary base-pairs rather than by the binding of Mg²⁺. The folding therefore creates the binding pockets for the magnesium ions that in turn bind and tighten up the structure becoming integral parts of the architecture, as is apparent from their low temperature factors. In addition to this important structural role, Mg²⁺ ions can be essential for RNA folding as is the case in, for instance, the *Tetrahymena* group I intron P4-P6 domain in which folding of the RNA nucleates around a Mg²⁺ core (Cate et al., 1996; 1997; Feig & Uhlenbeck, 1999).

Non-canonical and triple base-pairs

Figure 2 shows a gallery of all triple and tertiary base-pairs found in yeast tRNA⁰⁺. These have been noted before in the three-dimensional structure of yeast tRNA⁰⁺ and also in that of other tRNAs, but the high resolution of the present structure permits the hydration around these unusual base-pair interactions to be seen directly. Certain patterns of hydration are recurring features, such as water molecules within hydrogen bonding distance of the O₆ or N₇ of non-Watson-Crick base-paired guanine bases (Westhof 1988; Auffinger & Westhof, 1997).

Water structure

Although the water structure of the new model was completely rebuilt, the general solvent distribution reflects those of the previous studies (Westhof et al., 1988b), with the highly ordered corner of the L-shaped tRNA displaying the highest levels of concentration of water molecules. More than 80% of the water molecules we have assigned interact directly with RNA atoms; interestingly, almost 60% of these interactions are made with the nucleic acid backbone, reflecting the involvement of a high proportion of functional groups on the bases in both secondary and tertiary pairs. About 14% of the RNA-bound water molecules are bridging either adjacent or non-adjacent phosphate oxygen atoms, with 4% contacting both oxygen atoms of single phosphate groups. In addition, almost 10% of the water molecules are bridging the ribose O² and either the N₃ of purines or the O₂ of pyrimidines (see for example nucleotides A₁₄, A₂₃ (Figure 2(a)) and G₁₅, C₄₈, U₆₉ (Figure 2(b))). Concerning interactions between water molecules and RNA bases, there is an overall preference for guanine nucleotides (almost 45% of the observed contacts). In the case of purines, the groups more frequently involved are the N₆ and N₃ of adenine nucleotides and the O₆ and N₂ of guanine nucleotides, while an approximately equal proportion of interactions are observed at the O₂ and N₄/O₄ positions of pyrimidines.

Binding sites for Mg²⁺ and spermine

We have assigned ten Mg²⁺ binding sites and one spermine molecule (Figures 1(a), (b), 3 and 4). Six of the Mg²⁺ have relatively high temperature factors (up to about 105 Å² in the case of Mg²⁺ 10) and/or only partial occupancies (as low as about 1/3 for Mg²⁺ 7); they bind directly to the oxygen atoms of phosphate groups and some also interact with the O₃’ of a neighbouring ribose (Mg²⁺ 5 and 8). Presumably, the negative charge of other phosphate groups within the tRNA molecule is neutralised by additional Mg²⁺, but these are too mobile to be observed in the electron density map. Four magnesium ions are very tightly bound (B factors ~30-50 Å²), occupying unique geometric environments in the three-dimensional fold of the tRNA (Figure 3). Three of these sites (Mg²⁺ 1, 2 and 3) were observed before, but the fourth is a site not assigned in the original crystal structures of yeast tRNA⁰⁺ determined by our group (Jack et al., 1977). The 2.0 Å resolution of the electron density map, as well as their low temperature factors, permits the water structure of both the inner and outer hydration shells around the tightly bound Mg²⁺ to be resolved rather than inferred on the basis of difference maps as was the case for the lower resolution structures. Consequently, the present map provides a more detailed understanding of the ligation of magnesium ions to RNA and gives insights into their role in nucleic acid folding.

Magnesium site 1 is sandwiched between U₈, A₉ and C₁₁, U₁₂ in the D arm (Figure 3(a)). This site is created by the two triple base-pairs U₈ and U₉ form with the D stem. The Mg²⁺ contacts phosphate oxygen atoms of the four nucleotides (Mg²⁺ 1-O₂P(U₈) = 4.34 Å; Mg²⁺ 1-O₁P, O₂P(A₉) = 5.43, 4.73 Å; Mg²⁺ 1-O₂P(C₁₁) = 4.60 Å; Mg²⁺ 1-O₂P(U₁₂) = 3.00 Å) via a set of water molecules that fill up its binding pocket, allowing the four phosphate groups to approach each other closely.

The Mg²⁺ at site 2 (Figure 3(b)) is located in the sharp turn between G₂₀ and A₂₁. The ion sits between their extremely closely spaced phosphate groups (P-P distance = 3.02 Å) so that, by making direct contact with their oxygen atoms (Mg²⁺ 2-O₁P(G₂₀) = 1.87 Å; Mg²⁺ 2-O₂P(A₂₁) = 2.04 Å), it stabilises the turn. Several such sites are also found in the structure of the *Tetrahymena* group I intron P₄-P₆ domain (Cate et al., 1996). Two water molecules directly bound (1.92, 2.17 Å) to this metal ion are also visible (Figure 3(b)).

The Mg²⁺ at site 3 (Figure 3(c)) has one of the lowest temperature factors within the structure (29.6 Å²) and its inner, somewhat distorted pentahydrated shell is clearly discernible (in all cases, inner hydration spheres were not constrained to have an ideal octahedral geometry). This magnesium ion sits in a deep pocket formed by the bringing together of G₁₉-G₂₀ of the D loop and U₅₉-C₆₀ of the TΨC loop. Four of the water molecules in the inner hydration shell contact bases directly (O₆ and N₇ of G₂₀ (2.81, 2.68 Å), O₄ of
The O1P phosphate oxygen atom of G19 is contacted directly (2.05 Å), replacing one of the water molecules in the inner shell, while the O2P of G20 (at 6.21 Å) is contacted via a water molecule of the second hydration shell. Other water molecules in this region extend the number of contacts, permitting a complex network of interactions that fix the Mg$^{2+}$ and also stabilise this part of the structure. The geometry of the magnesium binding is particularly interesting and is a recurring feature: two inner shell water molecules that contact the O6 and N7 of G20 (2.81, 2.68 Å) do so in a geometry mimicking a base-pair, while a third inner shell water located at about 60° from the Mg$^{2+}$-guanine base plane contacts the O4 of U59 (2.33 Å) located on the ribose side of the G20 base (Figure 3(c)). Binding of Mg$^{2+}$ to guanine bases through two inner water molecules has recently also been observed in structures of a 5'S rRNA domain (Correll et al., 1997) and of sheared tandem G-A base-pairs (Gao et al., 1999).

The same geometry of binding is also seen for Mg$^{2+}$ site 4 (Figure 3(d)). This binding site is located at the junction between the D and anticodon arms and was not identified in the original 2.5 Å resolution structure by Hingerty and colleagues (Hingerty et al., 1978; Brown et al., 1985), although it was later suggested by Westhof & Sundaralingam (1986). It is also close to where a spermine molecule had been assigned in a previous analysis (Quigley et al., 1978). In this case too, the density for the magnesium, its inner hydration shell and other associated water molecules is unambiguously resolved. The six water molecules in the inner hydration shell with slightly distorted octahedral geometry can be seen clearly (Figure 3(d)). In the manner seen at site 3, two inner water molecules ‘base-pair’ with the O6 and N7 of G42 (2.58, 3.08 Å) and a third water molecule, at about 70° to the Mg$^{2+}$-guanine base plane, hydrogen bonds to the O4 of U41 (2.72 Å). In this instance, however, the uridine base is located on the non-ribose side of the G42 base. A fourth inner shell water is hydrogen bonded to one of the phosphate oxygen atoms of C25 (2.85 Å) and outer hydration water molecules contact G24, M2G26 and G43.

There is clear density for a spermine molecule sandwiched between two tRNA molecules in the crystal lattice (Figures 1 and 4). The spermine sits in the major groove of the T4C arm and loop, with its N10 involved in a long-range interaction with O4 of U52 (3.83 Å) as well as water-mediated contacts with N7 and O1P of G51 (at 4.76 and 4.62 Å, respectively), the N5 hydrogen bonding to the O4 of 5MU54 and contacting both phosphate oxygen atoms of 1MA58 (3.28, 3.67 Å), the N1 interacting with the O2 of PSU55 (3.45 Å) as well as with the phosphate groups of G57 (3.49 Å), 1MA58 (3.82 Å) and A14 (3.24 Å) of a symmetry-related molecule. Spermine was a crucial component of the crystallisation buffer and its location explains its role in packing molecules in the crystal lattice, which is further stabilised by the interaction of the terminal A76 with A36 of the adjoining molecule by a single amino-N1 hydrogen bond.

Mg$^{2+}$-catalysed tRNA hydrolysis in the crystal

Since the crystals were old and the electron density seemed poor for part of the D and anticodon loops, we decided to analyse the tRNA present in the batch of crystals used for data collection. The crystals, which were grown in dialysis bags as described in Materials and Methods, were recovered and washed several times in dialysis buffer. They were then dissolved and analysed by dena-
turing gel electrophoresis (Figure 5(a)). The analysis shows that about 40% of yeast tRNA^{Phe} in the crystals is cleaved at four positions clustered in two specific regions of the tRNA chain, resulting in eight main products: two complementary pairs of fragments of 15/16 and 61/60 nucleotides in length and another two pairs of fragments of 35/36 and 41/40 nucleotides. Self-cleavage in crystals has also been observed for yeast tRNA^{Asp} (Moras et al., 1985). Since the yeast tRNA^{Phe} crystals grew relatively rapidly (within a few days) and the starting material had been intact at the beginning of the experiment (data not shown), as also seen for our reference yeast tRNA^{Phe} marker (Figure 5(a), right lane), the site-specific hydrolysis observed must have occurred after the crystals had grown. The

![Figure 5](image.png)

Figure 5. Mg^{2+}-dependent hydrolysis of yeast tRNA^{Phe} in the crystals. (a) Denaturing gel electrophoresis analysis of tRNA^{Phe} recovered from 15 year old crystals from the same batch used for X-ray data collection. The tRNA from the crystals (left lane) is compared to a new batch of intact tRNA^{Phe} (SIGMA) (right). The identity of the major bands is indicated: bands 1-15 and 1-16 were assigned directly by MALDI-TOF; bands labelled in red have been interpreted by comparing their migration in the gel to that of bands 1-15, 1-16, full length tRNA^{Phe} and RNA markers of different sizes (21-32-43-58 nucleotides, not shown). (b) Relative positions of Pb^{2+} site 1 (grey) taken from the crystal at pH 5.0 (Brown et al., 1983) and Mg^{2+} site 3 in the present structure (green) located in the binding pocket formed by the D loop and T\W C loop. The two metals occupy different positions located 2.5 Å apart. The binding of Mg^{2+} excludes binding of the Pb^{2+}. Conventions are as in Figure 2. (c) Stereo-view of Mg^{2+} site 3 in the same orientation as in (b), colour-coded according to the relative temperature factors of the binding pocket. Note the high flexibility of nucleotides 16-18, and particularly of the first dihydrouridine, compared to that of the other nucleotides and of the Mg^{2+} itself. Broken green lines indicate hydrogen bonds, with distances in Å. For clarity, only water molecules directly bound to the metal ion are shown.
length of the fragments suggests that cleavage has taken place in the D loop and in the anticodon loop. This observation is consistent with an analysis of Mg$^{2+}$-dependent hydrolysis of yeast tRNA$^{\text{Phe}}$ carried out in solution at high pH conditions (pH 9.5), where the predominant cleavage of the ribose-phosphate chain occurred between H2U16 and H2U17 and, to a lesser extent, in the anticodon loop, resulting in half molecules (Wintermeyer & Zachau, 1973). Furthermore, the possibility of a Mg$^{2+}$-catalysed cleavage of the phosphodiester bond between H2U16 and H2U17 was also inferred from the electron density map of the orthorhombic form of the tRNA$^{\text{Phe}}$ crystals (Sussman et al., 1978). To confirm the size of the fragments and hence the sites of hydrolysis that had occurred in our crystals, we analysed the tRNA recovered from the crystals by MALDI-TOF mass spectrometry. The molecular masses obtained (4985.2 and 5292.0 Da; see Materials and Methods) are consistent with cleavage having taken place between G15 and H2U16 and between H2U16 and H2U17. Unfortunately, the analysis did not give reliable information on the longer fragments and their direct determination could not be pursued further due to the scarcity of material recovered from the original crystals.

Since spontaneous hydrolysis of phosphodiester bonds in RNA is very slow, in the order of 1500 years (Li & Breaker, 1999), the hydrolysis we observe in the crystal over 15 years presents a modest rate increase of about 100-fold, providing evidence for a role for Mg$^{2+}$ in the cleavage reaction, as well as pinpointing the sites of cleavage. Interestingly, the positions of the magnesium-dependent cleavage in the D loop (after G15 and H2U16) are respectively two and one nucleotides 5’ to the well-characterised lead cleavage site between residues H2U17 and G18, observed both in solution and in the crystal (Brown et al., 1983, 1985). The difference in the sites of hydrolysis provides evidence that cleavage is due to the presence of magnesium rather than small amounts of contaminating lead. Furthermore, metal content analysis of the crystallisation buffer revealed no presence of lead (see Materials and Methods). However, as the extent of Mg$^{2+}$-dependent cleavage is low and the electron density for this flexible region rather poor, we were unable to resolve the cleaved structure in the electron density map. In Figure 5(b), the location of the Pb$^{2+}$ in the lead crystal structure before hydrolysis (at pH 5.0; Brown et al., 1985) is shown superimposed on the location of the Mg$^{2+}$ (site 3) in the D/T/W loop pocket of the present structure of yeast tRNA$^{\text{Phe}}$. The two metal ions are not located in the same position, but at a distance of about 2.5 Å from each other (Jack et al., 1977; Brown et al., 1985). Thus, the difference in the location of the metal ions in the binding pocket correlates with the difference in the resulting cleavage positions. For both metal ions, the phosphodiester bonds that undergo cleavage are located in a short, single stranded region containing the two dihydrouridine groups, H2U16 and H2U17. The structure colour-coded according to temperature factors (Figure 5(c)) shows that the chain containing H2U16 and H2U17 is particularly flexible, having considerably higher temperature factors (average B factor ~61 Å2) than those of the tightly bound Mg$^{2+}$ (29.6 Å2) and of the RNA chains to which the ion binds at the bottom of the binding pocket. The cleavage positions within the D loop in the magnesium crystal structure (Figure 5(a)) correlate well with the high temperature factor of H2U16, whereas the different location of the Pb$^{2+}$ results in a shift of the cleavage site to the bond after H2U17, which is also relatively mobile. For Pb$^{2+}$-dependent cleavage, the evidence points towards a metal hydroxide participating in alkaline hydrolysis because the pK$_a$ value of Pb$^{2+}$-bound waters is around 8 (Feig & Uhlenbeck, 1999) and RNA hydrolysis is rapid at neutral pH conditions and is much reduced at pH 5.0 (Brown et al., 1985). The Pb$^{2+}$ is located at ~6.4 Å from the O2’ of the ribose of H2U17 that needs to be activated for nucleophilic attack to take place. The Mg$^{2+}$ is also located far from the cleaved phosphodiester bonds (Mg$^{2+}$ 3-O2’(G15) = 6.22 Å; Mg$^{2+}$ 3-O2’(H2U16) = 9.13 Å). However, we note that one of the inner hydration water molecules points towards these bonds (H$_2$O-O2’(G15) = 5.25 Å; H$_2$O-O2’(H2U16) = 7.94 Å). Although the pK$_a$ value of water molecules in the hydration shell of a Mg$^{2+}$ is approximately 11 (Feig & Uhlenbeck, 1999), consistent with a much slower hydrolysis rate, it is possible that the pK$_a$ value of this water could be lowered by the interactions between inner hydration shell waters. Another possibility is that nucleotide C60, whose N3 contacts the Mg$^{2+}$ through the same inner shell water molecule (N3(C60)-H$_2$O = 3.14 Å; Figure 5(c)), participates in the self-cleavage reaction by acting as a general acid, while an hydrated metal hydroxide, resulting from splitting of the water molecule into OH$^-$ and H$^+$ upon protonation of N3(C60), would function as the general base. This second mechanism would be very similar to that recently proposed for a hepatitis delta virus ribozyme (Nakano et al., 2000).

Whatever the mechanism, the most plausible rationale for site-specific hydrolysis is that the flexibility of the H2U16-G18 region allows sampling of different conformations, bringing the scissile bonds sufficiently close to the attacking group and in the right geometry for hydrolysis to take place. In order to reach this conformation, significant local “breathing” of the structure within the crystal would be required. These considerations suggest that a conformation compatible with the in-line attack mechanism (Soukup & Breaker, 1999) could in principle be achieved due to the local flexibility of the RNA. Consistent with this observation, flexibility is also important in the cleavage mechanism of the lead-dependent ribozyme (Wedekind & McKay, 1999).

The other major positions of cleavage are located within the anticodon loop, most likely between

Structure of Yeast tRNA$^{\text{Phe}}$ at 2.0 Å Resolution
A35 and A36 and between A36 and YG37 (Figure 5(a)), in another region of the structure with high temperature factors (Figure 1(c)). The mechanism for these cleavage reactions is even more obscure, but is unlikely to be due to non-specific metal promoted degradation since cleavage appears to be site-specific and in one case coincides with a clearly visible Mg$^{2+}$ (Mg$^{2+}$6) bound to the phosphate group of A36.

In summary, in tRNA as in ribozymes, Mg$^{2+}$ can provide the right geometric environment and the positioning of groups for RNA self-cleavage to occur, whereas the inherent flexibility of the scissile bond allows it to adopt the geometry required for hydrolysis to take place.

Conclusions

We have taken advantage of the new generation of high energy X-ray sources and modern refinement techniques to re-determine the crystal structure of yeast tRNA$^{\text{Phe}}$ to 2.0 Å resolution. The new structure is at a higher resolution than has so far been obtained for large, complex RNA structures. It corroborates much of the old structural information but reveals some novel details. The quality of the electron density allows the water structure to be directly resolved but reveals some novel details. The quality of the electron density allows the water structure to be directly resolved but reveals some novel details. The quality of the electron density allows the water structure to be directly resolved but reveals some novel details.

Materials and Methods

tRNA preparation and crystallisation

Saccharomyces cerevisiae tRNA$^{\text{Phe}}$ was purchased from Boehringer-Mannheim Corporation and further purified on a Sephadex G-100 gel filtration column equilibrated against 20 mM Tris-HCl (pH 7.5), 2 mM EDTA, 100 mM NaCl. The main peak was collected, precipitated and resuspended in 20 mM Tris-HCl (pH 7.5), 1 mM EDTA at a final concentration of 8 mg/ml. Monoclinic crystals were grown at 4 °C by dialysis of the tRNA at 4 mg/ml against 10 mM Tris-HCl (pH 7.5), 12 mM MgCl$_2$, 2 mM spermine and 6% (v/v) 1,6-hexanediol, essentially as described by Ladner et al. (1972). The crystals used for the crystallographic and biochemical analyses described in this paper had been stored at 4 °C and were about 15 years old.

Analysis of the cleavage of yeast tRNA$^{\text{Phe}}$ in the crystals

Electrophoretic analysis

Crystals were transferred to a microtube and centrifuged at 13,600 g for five minutes, after which the mother liquor was removed. They were then washed five times with 500 µl of dialysis buffer and finally dissolved in 100 µl of 10 mM Tris-HCl (pH 7.0), 20 mM EDTA. RNA fragments were separated on denaturing polyacrylamide gels (10% 19:1 acrylamide:bis-acrylamide, 8 M urea, 1 × TBE) and stained with 0.1% (w/v) toluidine blue. After drying, gels were scanned and analysed with the gel Plotting Macros of the public domain NIH Image program (developed at the US National Institutes of Health and available at http://rsb.info.nih.gov/nih-image/). Fragments deriving from cleavage at nucleotides H2U16 and H2U17 were identified by MALDI-TOF mass spectrometry (see below). Sizes of all other tRNA cleavage products were extrapolated from the migration of the dihydrouridine cleavage bands themselves, RNA markers of known composition of 21-32-43-58 nt, and full length yeast tRNA$^{\text{Phe}}$, which was fitted with a quasi-Newton algorithm in the program MacCurveFit (http://www.home.aone.net.au/hrs/mcf.html), using the function $F(X) = a + b \times X^c$ ($a = 26.326$, $b = -7.441$, $c = 0.116$, SSE = 0.028, $R^2 = 0.997$).

MALDI-TOF mass spectrometry

To remove excess salts, tRNAs extracted from the crystals were precipitated with 2.5 volumes EtOH 96% (v/v)/0.1 volumes 3.3 M K0Ac (pH 5.8) at −70 °C; pellets were washed with EtOH 70%, air dried and resuspended in Milli-Q H$_2$O. Alternatively, samples were desalted by drop dialysis against water using Millipore VS 0.025 μm filters. The resulting material (approximately 0.7 mg/ml) was prepared 1:1 with a solution of 3-hydroxypropionic acid (25 mg/ml) in 70:30 acetonitrile-water containing diammonium hydrogen citrate (35 mg/ml). Calibration was by means of an internal DNA standard. Spectra were recorded using a Voyager DE mass spectrometer (PerSeptive Biosystems) in positive ion mode, using an accelerating voltage of 25 kV and a pulse delay time of 600 ns. Clear signals were recorded for RNA species with molecular masses of 4985.2 and 5292.0 Da, respectively; these figures are in excellent agreement with the expected masses of the small fragments resulting from cleavage between G15 and H2U16 (nt 1-15; 4947 Da) and between H2U16 and H2U17 (nt 1-16; 5255.2 Da), with the addition of a single potassium ion.

Trace metal analysis of crystallisation solution

Inductively coupled plasma emission spectroscopy (ICP-ES) analysis of the concentration of divalent metal ion contaminants in the crystallisation solution was performed at Butterworth Laboratories Limited, Teddington, UK. The concentrations of Mn, Ni, Zn, Pb and Cd ions were all below detectability (<0.5 mg/l).

Crystal cryoprotection and data collection

Crystals were first washed in fresh crystallisation solution at 4 °C for ten minutes and then cryoprotected at the same temperature by stepwise addition of 2-methyl-2,4-pentanediol (+5%/ten minutes) in the crystallisation buffer to a final concentration of 30%. They were then flash-frozen in liquid N$_2$ and stored for data collection. Several crystals were screened both at beamline 5.2R of Elettra synchrotron, Trieste, and beamline ID14-4 of ESRF synchrotron, Grenoble; of these, only one diffracted beyond 2.0 Å resolution and was used for data collection at 100 K at ESRF. The data set was indexed and integrated with Denzo, scaled and reduced with Scalepack (Otwinowski & Minor, 1997) and finally merged using the SCALE_NATIVE routine of Solve (Terwilliger & Berendzen, 1999). Although diffraction...
spots could be observed to ~1.8 Å resolution, the \(\langle I / \sigma(I) \rangle \) significantly dropped beyond 2.0 Å, which was then chosen as high resolution limit for processing (at this resolution, \(\langle I / \sigma(I) \rangle > 2 \)). Data processing statistics may be found in Table 1.

Refinement

As a result of the cryoprotection, the unit cell of the yeast tRNA\(^{\text{Phe}}\) crystals shrunk by more than 4% relative to the dimensions reported for the same crystal form for data collected at \(-5^\circ\) C (PDB ID 4TNA; Hingerty et al., 1978) and at 16°C (PDB ID 1TRA; Stout et al., 1978; Westhof & Sundaralingam, 1986). Four rounds of rigid-body refinement were therefore performed with CNS (Brünger et al., 1998) in order to get the correct starting orientation of the molecule within the cryo-cooled unit cell. The last available refined structure of monoclinic tRNA\(^{\text{Phe}}\) (1TRA, 3.0 Å resolution; Westhof & Sundaralingam, 1986) was used as starting model, since it yielded the best starting R and Rfree values in a preliminary test where the 1TRA and 4TNA tRNA\(^{\text{Phe}}\) coordinates were compared using a common high resolution limit of 3.0 Å. In the first round, the whole tRNA molecule (including the five magnesium ions identified by Westhof & Sundaralingam (1986)) was refined as a rigid body against data up to 2.7 Å resolution. In the second round, three rigid bodies, respectively corresponding to (1) nt 1-7 and 49-76, (2) nt 8-48; and (3) Mg\(^{2+}\), were defined and independently refined to the same resolution. In the third round, the number of rigid units was increased to 20 ((1): nt 1-7, 66-72; (2): nt 73; (3): nt 49-53, 61-65; (4): nt 8; (5): nt 9; (6): nt 54-60; (7): nt 10-13, 22-25; (8): nt 14-21; (9): nt 26; (10): nt 27-31, 39-43; (11): nt 32-38; (12): nt 44; (13): nt 45; (14): nt 46; (15): nt 47; (16): nt 48; (17): nt 74; (18): nt 75; (19): nt 76; (20): Mg\(^{2+}\) ions). In the last round, the tRNA molecule was again refined as a single rigid body, while each of the Mg\(^{2+}\) was independently refined. At this stage, the crystallographic R value was 35.4% and the Rfree value was 37.1% for all data up to 2.7 Å resolution. The refinement was then continued by alternating rounds of manual rebuilding with the program O (Jones & Kjeldgaard, 1997) and energy minimisation with CNS (Brünger et al., 1998), while gradually including high resolution reflections up to 2.0 Å. Both sigmaweight differences and composite annealed omit maps (Brünger et al., 1997) were inspected during rebuilding. These maps were particularly useful to correct the sugar puckering of nucleotides A21 and U47 and confirm introduction of water molecules in correspondence of unaccounted \([F_o - F_e] \) map density peaks. In addition, electron density maps were also calculated using X-ray holographic image reconstruction, a real-space electron density imaging and refinement procedure implemented in the program EDEN (Szőke, 1993; Somoza et al., 1995; Szőke et al., 1997 (http://www.dl.ac.uk/CCP/CCP4/proceedings/1997/a_szoke/main.html)). For holographic reconstructions in both correction and completion mode, a solvent target was prepared using the rigid-body refined yeast tRNA\(^{\text{Phe}}\) model to construct a low-resolution solvent mask, which was then used with weights of 0.01-0.001. The solvent structure of tRNA\(^{\text{Phe}}\) was completely rebuilt using conservative criteria, so that water molecules were fitted only in density peaks above 1.0 \(\sigma \) in the \([F_o - F_e] \) and composite anneal omit maps, spaced by a maximum of 3.8 Å (3.5 Å + expected coordinate error) from either RNA atoms or other water molecules. Throughout refinement, a maximum likelihood target was used and bulk solvent and overall anisotropic B factor corrections were applied. Nucleotide bases were restrained to be planar; no restraints were specified for Mg\(^{2+}\) octahedral coordination. Individual B factor refinement of all RNA atoms was performed; alternated rounds of individual B factor and occupancy refinement of all Mg\(^{2+}\), spermine and water molecules were also carried out until convergence. Within the D loop, density for most of nucleotide H2U16 (with the exception of the phosphate group and the O5\(^\prime\) atom), as well as for the phosphate group, O5\(^\prime\) and O3\(^\prime\) atoms of H2U17, was very poor. Since gel analysis of tRNA of the crystals indicated partial cleavage at either side of H2U16, the individual occupancy of the atoms in this region was also refined. While the final maps show clear density for both the ribose and the base of nucleotide H2U17, the position of H2U16 could not be unambiguously resolved and its current coordinates should therefore be considered tentatively. All Mg\(^{2+}\) sites identified in the monoclinic crystals by Hingerty et al. (1978) (PDB ID 4TNA) and Westhof & Sundaralingam (1986) (PDB ID 1TRA) are confirmed by the high resolution structure, with the exception of Mg\(^{2+}\)-4 of entry 4TNA and Mg\(^{2+}\)-5 of entry 1TRA. Mg\(^{2+}\) site 4 of the orthorhombic crystal structure of tRNA\(^{\text{Phe}}\) (PDB ID 4TRA; Westhof et al., 1988a) is also not observed in the current model. The RMSDs between our final model and entries 4TNA, 1TRA and 4TRA (excluding nucleotide H2U16, ion, spermine and water atoms) are 1.09 Å, 1.14 Å and 1.16 Å, respectively (superpositions and RMSD calculations were performed using the McLachlan algorithm (McLachlan, 1982), as implemented in the program ProFit (Martin, A. C. R., http://www.biochem.ucl.ac.uk/~martin/programs/prof11)).

Figure 1(b) was produced using Ribbons (Carson, 1997); Figures 1(c), 2, 3, 4, 5(b) and (c) were prepared with Swiss-PdbViewer (Guex & Peitsch, 1997) and PovRay® (http://www.povray.org).

Coordinates and structure factors

Atomic coordinates and structure factors have been deposited in the Nucleic Acid Database (accession code TR0002) and in the Protein Data Bank (PDB) (accession code 1EVV). They are also accessible at http://www.mssm.edu/students/jovin02/research/research.html

Note added in proof

A high resolution crystal structure of yeast tRNA\(^{\text{Phe}}\) has also been independently determined by the group headed by Professor Peter B. Moore (Shi & Moore (2000), RNA, in the press).

Acknowledgements

We thank Titia Sixma and Katjusa Brejc (NKI, Amsterdam) for beamtime and help during data collection at ESRF; David Earnshaw (MRC-LMB, Cambridge) and Scott Furey (Chemistry Department, University of Cambridge) for help with MALDI-TOF analysis; Navraj Pannu and Randy Read (MRC Dunn Human Nutrition Unit, Cambridge) for advice on CNS; Patrick Gendron and François Major (Department of Computer Sciences and O.R., University of Montreal) for RNA conformation analysis with the program Annote (Gendron, Lemieux...
References

Edited by J. Karn

(Received 20 April 2000; received in revised form 6 June 2000; accepted 13 June 2000)
ERRATUM

The Crystal Structure of Yeast Phenylalanine tRNA at 2.0 Å Resolution: Cleavage by Mg$^{2+}$ in 15-year Old Crystals

Luca Jovine, Snezana Djordjevic and Daniela Rhodes

J. Mol. Biol. (2000) 301, 401–414

It is regretted that Figure 4 of the above paper was printed incorrectly; it appears correctly below.

Figure 4. Stereo representation of the spermine molecule binding site. tRNA nucleotides, in stick representation, are colour-coded according legend to Figure 2; nitrogen and carbon atoms of spermine are shown in blue and grey, respectively. Nucleotide labels are colour-coded according legend to Figure 1(a). The combined, sigmaa-weighted $|2F_o - F_c|$ electron density map of spermine and of a water molecule mediating its interaction with nucleotide G51 is shown (contour = 0.9 σ). Contacts between spermine and RNA are indicated by broken green lines. The base of nucleotide A14 from a symmetry related molecule (labelled in reverse colour) has been omitted for clarity.